
Security and Performance Bug Reports Identification
with Class-Imbalance Sampling and Feature

Selection

Dipok Chandra Das
Institute of Information Technology

University of Dhaka, Bangladesh
bsse0501@iit.du.ac.bd

Md. Rayhanur Rahman
Institute of Information Technology

University of Dhaka, Bangladesh
rayhan@du.ac.bd

number of bug reports [4]. The triager use grep based search-
ing to identify security and performance bug reports. grep
takes the advantage of string matching property. For security
bug, the triager search with security-vulnerability terms e.g.
“authorization”, “login” ,“attack”, etc., and for performance
bug reports, search with performance-related terms e.g. “perf”,
“performance”, “memory”, etc. But the grep based approach
does not perform well in real scenario. Because both the
summary and description of a bug report written in free-
form natural language text are incomplete and imprecise [5].
It also requires domain knowledge about software security
and performance. So, to overcome time-consumption, human-
error and low-performance of grep, we propose a learning
based approach along with text-mining in order to identify
security and performance bug reports. The learning based
approach builds a classifier model (i.e. statistical model) using
text-mining techniques from historically labeled bug reports
to identify security and performance bug reports. But in the
learning approach, there are two problems due to imbalanced
data namely class-bias [6] and feature-skew [3]. Class-bias
problem refers the bias to the majority sampled class in
a classification model due to imbalanced data in a binary
setting. In our case, the number of security bug reports
and performance bug reports are smaller than other types
of bug reports. So, the learning model gets biased to other
kinds of bug reports. Feature-skew problem refers to positive
features outnumbering negative features in selected features by
a two-sided feature selection metric e.g. CHI-Square, Mutual
Information [7], or its derivatives [8], etc. due to imbalanced
data [3]. So, the negative features are absent from the selected
features resulting in misclassifying samples of negative class.
But correct classification of samples of negative class is also
important as negative samples dominate in number.

In order to address the class-bias problem, we apply class-
imbalance sampling which balances the samples of considered
classes to some extent before training the model. There are
popular sampling techniques namely under-sampling, over-
sampling and SMOTE [6]. We apply Random Under-sampling
(RUS) in our study, a variant of under-sampling because of its
effectiveness [10]. In order to address feature-skew problem,
we apply a feature selection proposed by Zheng et al. [3] which
selects positive and negative features separately and explicitly
combines them as selected features.

In this paper, we propose two separate binary single

Abstract—Nowadays, software projects receive a huge number
of bug reports daily. Among them, security and performance
bug reports are higher priority to software developers and users.
So, rapid identification of security and performance bug reports
as soon as these are reported is mandatory. But bug tracking
systems do not provide any mechanism to isolate them from
the collection of bug reports. In this paper, we have proposed
a learning based approach to identify security and performance
bug reports addressing class-bias and feature-skew phenomenon.
We have proposed two separate classification models namely
Sec-Model and Perf-Model, where the former classifies a bug
report as security or non-security bug report and the latter
classifies as performance or non-performance bug report. We
have experimented our approach on four datasets of bug reports
of four software projects- Ambari, Camel, Derby and Wicket. We
have evaluated the performance of our two models in terms of
area under curve receiver operating characteristics curve (AUC).
The average AUC values of Sec-Model and Perf-Model are 0.67
and 0.71 respectively.

Keywords—Bug Report Classification, Security Bug, Perfor-
mance Bug, Class-Imbalance Learning, Feature Selection

I. INTRODUCTION

Software projects often manage bug tracking systems to
track the bugs in their software. These bugs are reported
by testers, users or developers from all over the world. A
triager inspects the reported bug report and take actions i.e.
assigning priority, developer for this bug report. Among these
bug reports, the triager has to isolate high impact security and
performance bug reports as soon as these are reported. Since
the usage of Internet devices are increasing, the security issues
are of great concern among people [1]. A security bug can
cause unauthorized access to the software. Performance bug
causes performance degradation i.e. low user experience, waste
of computational resources, lower throughput, less responsive-
ness. A performance bug can force the users to switch to
competitive providers [2]. So, delay in identifying or unnoticed
security or performance bug reports can cause serious loss to
systems as well as users. But in a large-scale software system,
a huge amount of bugs is reported daily [3]. So, it becomes a
tiresome and time-consuming task for a triager to inspect each
bug report and to isolate security and performance bug reports.
Manual inspection process can also introduce human-error.

The bug tracking tools do not provide any mechanism
to isolate security and performance bug reports from huge

2018 Joint 7th International Conference on Informatics, Electronics & Vision (ICIEV) and
2018 2nd International Conference on Imaging, Vision & Pattern Recognition (icIVPR)

978-1-5386-5163-6/18/$31.00 ©2018 IEEE
316

label classification models namely Sec-Model and Perf-Model,
where the former has two labels, security (i.e. positive) and
non-security (i.e. negative) bug report and the latter has two
labels, performance (i.e. positive) and non-performance (i.e.
negative) bug report. We propose two separate classification
models instead of one single classification model for two rea-
sons. Firstly, it is due to multi-class imbalanced classification.
In multi-class imbalanced classification, the relations among
classes are not straightforward. One class is minor compared
to second class but is major to third class. There exist data-
level difficulties like overlapping and class noise and ill-defined
class boundaries [6]. So, the overall performance of a single
multi-class imbalance classification model degrades. Secondly,
correct identification of security and performance bug reports
is essential because of their high impact nature. Each category
(i.e. security or performance) will get more focus in separate
classification models than one single classification model. Sep-
arate classification models will take more time and resources
but will help to identify the security and performance bug
reports accurately. Our proposed approach is equivalent to one-
versus-all approach in multi-class imbalanced classification
[9]. We have used Naı̈ve Bayes Multinomial (NBM) as a ma-
chine learning algorithm in the classification models because of
its effectiveness [8], [10]. We have experimented our approach
on four datasets of bug reports created by Ohira et al. [1].
We use popular technique Receiver Operating Characteristic
(ROC) to evaluate the effectiveness of our approach which
is popular in fraud detection, medical science, etc [11]. We
compare the performance of each classification model in terms
of area under ROC curve (AUC).

The reminder of this paper is organized as follows. Section
II presents the related work. Section III describes the proposed
approach. Section IV illustrates the experiments and results.
Section V contains threats to validity. Section VI contains
conclusion and future work.

II. RELATED WORK

We classify the related works into three parts. The first part
contains studies about security and performance bug reports.
The second part is about bug report categorization and the third
part is about studies on class-imbalance and feature selection
techniques applied in the field of bug report.

A. Security and Performance Bug Reports

The recent work close to ours is conducted by Zhou et
al. [12]. They propose machine learning approach in order
to find security vulnerabilities from bug reports in open
source projects. They apply the ensemble method, Stacking
[13] in order to resolve imbalanced data problem. First,
our study focuses on security and performance bug report.
Second, our study is more interested on feature selection
and class-imbalance sampling. Because feature selection and
class-imbalance sampling are relatively more important than
machine learning algorithm in imbalanced situations [14].
Gegick et al. [15] propose a text mining approach to identify
security bugs. They have investigated their proposed approach
on Cisco Software Systems1 to identify security bug reports.
They have found that the security bugs are mis-labeled by

1https://www.cisco.com/

security engineers too. They do not consider the imbalanced
data phenomenon.

Zaman et al. [16] conduct a case study on security and
performance bug reports of Mozilla Firefox2. They have found
that the security and performance bug reports require more
time, developers to fix than other types of bug reports. Next
year, Zaman et al. [4] conduct a qualitative study on per-
formance bug reports. They have collected 400 performance
and non-performance bug reports from Mozilla Firefox2 and
Google Chrome3. They have found that performance bug re-
ports contain performance specific terms (cpu, memory, disk),
improvement suggestion, test cases, etc.

Kashiwa et al. conduct a pilot study on the diversity of high
impact bug reports including security and performance bug
reports [2]. Ohira et al. [1] create four datasets of high impact
bugs of four well-known software projects each containing one
thousand bug reports. They have found that the characteristics
of security and performance bug reports are quite different
from other types of bug in terms of number, fixing time
and information source provided by reporters and required by
developers to identify and fix them.

Those above mentioned studies confirm that security and
performance bug reports are different from other types of
bug reports. We are interested in identifying security and
performance bug reports more accurately from the collection
of huge bug reports. So, we rather build classification model to
identify newly arrived security and performance bug reports.

B. Bug Report Categorization

The popular bug report categorization works are bug triage
[5], duplicate bug report detection [17], bug and non-bug report
identification [18], priority prediction [19], severity prediction
[20], etc. These are also known as text categorization. In
these text categorization, the number of samples of each
category is roughly similar. But in security and performance
bug reports, imbalanced data exists. Considering severity and
priority, Kashiwa et al. introduce six types of high impact bug
reports. We focus on two high impact product bugs, security
and performance bug [2].

C. Class-imbalance and Feature Selection on Bug Reports

Yang et al. [10] introduce class-imbalance sampling in
order to identify surprise bug reports. They use datasets created
by Ohira et al. [1] to measure the effectiveness of the class-
imbalance sampling. While surprise bugs are process bugs,
security and performance bugs are product bugs. Menzies et al.
[20] perform feature selection techniques InfoGain for predict-
ing the severity of an upcoming bug report. Sharmin et al. [8]
select most indicative features applying combination of Mutual
Information and Chi-Square for bug report severity prediction.
Sharma et al. [21] apply InfoGain and Chi-Square in order to
select top-125 features i.e. terms for severity prediction on bug
reports. But these conventional feature selection metrics i.e.
Mutual Information, InfoGain, Chi-Square, etc. do not perform
well in imbalanced data scenario [3].

317

Fig. 1: Overall Framework of Generalized Classification Model

III. PROPOSED APPROACH

Our approach builds a classification model (i.e. statistical
model) from historically labeled bug reports to identify secu-
rity and performance bug reports. We build two separate binary
single-label models namely Sec-Model and Perf-Model. The
generalized model is shown in Figure 1 and described in this
section. Firstly, we extract features from bug reports. Secondly,
we perform feature selection on extracted features and class-
imbalance sampling on labeled data. Thirdly, we apply Naive
Bayes Multinomial (NBM) as a machine learning algorithm
in order to build our classification model. Finally, we evaluate
our prediction model on some real data.

A. Feature Extraction

We consider the textual information (i.e. summary and
description) of bug reports as source of our feature extraction
of our classification model. We apply text mining approach
to extract features from the textual information. First, we use
tokenization to extract terms in the textual information and
also to filter out the punctuation, numbers, etc. Applying Stop-
words removal, we filter out conjunctions, prepositions and
terms e.g. “the”, “in”, etc., as those terms do not carry much
specific information. Then, we use Porter Stemmer [22] to
convert each term to its basic form as same term expressed in
different forms carry same information. The extracted terms
are the used as extracted features. We represent a bug report
using the feature vector as BR = 〈f1, f2, f3, f4, ..., fn〉 where
n is the total number of features i.e. terms and the value of fi
is the tf-idf value of the feature in the bug report.

B. Feature Selection

Bug reports classification is considered as text catego-
rization problem. The dimension of feature space on text
categorization is high. Because of high-dimensionality, the
performance of classification model degrades [7]. Feature se-
lection method selects the most indicative features filtering out
noisy and redundant features. Feature selection also reduces

2https://bugzilla.mozilla.org/
3https://www.chromium.org

training and testing time as well as the chance of over-fitting.
The features can be positive and negative referring to indicative
of membership and non-membership of a specific category
respectively. One-sided feature selection metric e.g. Log ODD
Ratio, Coefficient Correlation [3], etc. selects either positive
or negative but not both features. Positive features selected
by one-sided metric can predict the positive samples rightly
but fail to correctly classify the negative samples [3]. But the
correct classification of the negative samples is also important
as in our context, the negative samples outnumbers positive
samples significantly. Two-sided feature selection metric e.g.
Chi-Square, Mutual Information, [7] etc. selects features com-
bining positive and negative features ignoring the sign of the
feature. Features selected by two-sided metric on imbalanced
data ignore the negative features as their score is not significant
due to huge number of negative samples. So, the samples of
negative class are misclassified. Forman et al. argue that feature
selection is more important than machine learning algorithm
in imbalanced data [14]. So, correct combination of positive
and negative features is needed.

Zheng et al. [3] propose a feature selection technique for
text categorization for imbalanced data which selects positive
and negative features using one-sided metric separately and
explicitly combines the positive and negative features as se-
lected features. The proposed feature selection outperforms the
existing both one-sided feature selection metrics and two-sided
feature selection metrics on imbalanced data. The proposed
framework has two parameters, α, percentage of positive
features of total features and l, total number of features. The
feature selection framework is described below:

• Choose a one-sided feature selection metric ξ(t, C)
and empirically select two parameter α and l

• Select positive feature set, F+ of l1 = α ∗ l features
with highest ξ(t, C) scores

• Select negative feature set, F− of l2 = l− l1 features
with lowest ξ(t, C) scores

• Compute the union of positive and negative features
set to find final feature set F , F = F+ ∪ F−

In this proposed framework, any one-sided feature selection
metric can be used. Likewise Zheng et al. [3], we use LOR,
Log Odd Ratio, as one-sided feature selection metric. In
a binary setting of positive and negative class, odds ratio
measures the odds of the term occurring in the positive class
normalized by that of the negative class. The basic idea is that
the distribution of features on the positive class is different
from the distribution of features on the negative class. LOR is
computed by (1).

LOR(t, Ci) = log
P (t|Ci)[1− P (t|C̄i)]

P (t|C̄i)[1− P (t|Ci)]
(1)

In (1), t and Ci refer to term and class respectively.

C. Random Under-Sampling

Due to class-bias, the performance of classification model
degrades. Class-imbalance sampling overcomes the bias by
balancing the number of samples of considered classes be-
fore training. There are three popular sampling techniques
namely under-sampling, oversampling and SMOTE [23]. We
use under-sampling as this technique performs better in most

318

cases [10]. Under-sampling continuously deletes the samples
from majority class until a predefined ratio of the number of
samples belonging to majority class to the number of samples
of all classes is reached. Under-sampling repeats the following
two steps until a predefined ratio of majority samples to all
samples reaches to r:

Step1: Sample Selection: Select a sample from the original
data belonging to majority class. The sample is se-
lected randomly or applying KNN4-like approach.

Step2: Sample Deletion: The selected sample is deleted from
training data.

In our experiment, we select samples belonging to majority
class randomly, namely Random Under-sampling (RUS). We
use Random Under-sampling (RUS) because of its effective-
ness [10]. We set r as 0.5 stating that the number of samples
of positive and negative class is equal in the training data.

D. Naı̈ve Bayes Multinomial Model

Naive Bayes (NB) classifier is a popular machine learning
algorithm in text categorization. Naive Bayes assumes that the
features are independently and identically (i.i.d) distributed.
Also, all the features are binomial. It states that each feature
has value either 0 or 1; a feature is present or absent in
an instance. Despite unrealistic assumption, the classifier per-
forms surprisingly well. Naive Bayes Multinomial (NBM) is a
derivation of Naive Bayes. The value of each feature in NBM
is any non-negative number. NBM outperforms NB because
NBM carries more information than NB [8] [10]. A bug report
is represented as a vector BRi = 〈fi1, fi2, fi3, ..., fin〉 where n
is the size of the feature set and each fij ∈

[
0,∞) indicates the

tf-idf value of each term in bug report BRi. The conditional
probability of class, cj given bug report, BRi is computed
using Bayesian rule (2).

p(cj |BRi) =
p(cj)× p(BRi|cj)

p(BRi)
(2)

The probability p(BRi|cj) is calculated under Naive Bayes’
assumption of independence of features by (3).

p(BRi|cj) =

n∏
k=1

p(tk|cj)w(tk,BRi) (3)

In (3), w(tk, BRi) is tf-idf value of term tk in BRi. p(tk|cj)
is estimated from training data with known classes, using
maximum likelihood Laplacean prior:

p(tk|cj) =
1 +

∑
BRi∈cj w(tk, BRi)

n+
∑n

k=1

∑
BRi∈cj w(tk, BRi)

(4)

As prior, p(cj) is uniform among classes and p(BRi) is equal
to 1 for all classes, the Multinomial Naive Bayes Classifier
predicts the label ĉ of a Bug Report using the (5).

ĉ = arg max
j

n∏
k=1

p(tk|cj)w(tk,BRi) (5)

4K-nearest neighbour

TABLE I: Ohira Dataset [1]

Project Total BR Sec BR Perf BR IR in Sec-Model IR in Perf-Model

Ambari 1000 29 41 33.48 23.39

Camel 1000 32 93 30.25 9.75

Derby 1000 88 101 10.36 8.90

Wicket 1000 10 83 99 11.05
BR-Bug Report, Sec-Security, Perf-Performance, IR-Imbalance Ratio

IV. EXPERIMENT AND RESULTS

In our study, the experimental environment is Intel(R)
Core(TM) i3450 3.10 GHz CPU, 8GB RAM desktop running
Windows 10 (64-bit). In our evaluations, we intend to answer
the two research questions:

• RQ1-How the proposed approach affect the perfor-
mance of the classifier?

• RQ2-How the classifier performs with respect to train-
ing with description of bug report?

A. Data Collection

We have collected four datasets of bug reports (i.e. issue
reports) of four software projects namely Ambari5, Camel6,
Derby7 and Wicket8. Ohira et al. [1] have created these datasets
and manually labeled these four thousand bug reports in order
to study the characteristics of high impact bugs including
security and performance bug reports. The details of four
datasets are shown in Table I. Each dataset contains one
thousand bug reports referring to one of four projects. The
proportion of security and performance bug reports is smaller
across all four datasets (i.e. projects) resulting in imbalanced
data. The ratio of number of negative samples to positive
samples is called imbalance ratio, IR. In both Sec-Model and
Perf-Model, the negative samples outnumbers positive samples
significantly across all projects. Sec-Model experiences highly
imbalanced data compared to Perf-Model. The average IRs
in Sec-Model (i.e., non-security:security) and Perf-Model(i.e.,
non-performance:performance) is 43.27 and 13.27 respectively.
The IR of project Wicket is 99, resulting in highest imbalanced
data.

B. Experimental Settings

In order to answer the research question, RQ1, we build
each classification model in three different approaches namely
Proposed-SFS, RUS and FS. In RUS, we do not address the
feature-skew problem, and it similar to the approach proposed
by Yang et al. [10] for surprise bug reports identification and
in FS, we do not address the class-bias problem, and it is
similar to approach proposed by Zheng et al. [3] for text
categorization on imbalanced data. In order to answer the
research question, RQ2, we conduct feature extraction (see
Section III-A) in two ways. One way, we extract features
only from the summary of bug report excluding description is
named without-desc and other way, we extract features from
both summary and description is named with-desc (see Table
IIa and Table IIb). We use popular ten-fold cross-validation

5https://issues.apache.org/jira/projects/AMBARI/
6https://issues.apache.org/jira/projects/CAMEL/
7https://issues.apache.org/jira/projects/DERBY/
8https://issues.apache.org/jira/projects/WICKET/

319

TABLE II: Experimental Results of Sec-Model and Perf-Model

(a) AUC values of Sec-Model

FEx Method Ambari Camel Derby Wicket AVG

without-desc RUS 0.6460 0.6223 0.7309 0.5141 0.6283

without-desc FS 0.5391 0.6206 0.7598 0.5260 0.6114

without-desc Proposed-SFS 0.7071 0.6200 0.8065 0.5414 0.6688

with-desc RUS 0.6260 0.5859 0.7238 0.5535 0.6223

with-desc FS 0.5986 0.6646 0.7527 0.5189 0.6337

with-desc Proposed-SFS 0.5933 0.6725 0.8291 0.5331 0.6570

(b) AUC values of Perf-Model

FEx Method Ambari Camel Derby Wicket AVG

without-desc RUS 0.7071 0.6430 0.6884 0.5759 0.6536

without-desc FS 0.5980 0.6525 0.6843 0.6532 0.6469

without-desc Proposed-SFS 0.6275 0.6590 0.7686 0.6729 0.6820

with-desc RUS 0.6645 0.6477 0.6846 0.6532 0.6625

with-desc FS 0.6391 0.6379 0.7117 0.6912 0.6700

with-desc Proposed-SFS 0.7067 0.6540 0.7322 0.7401 0.7083
FEx:Feature Extraction, with-desc: summary+description, without-desc: summary, AVG: Average AUC value

TABLE III: Confusion Matrix

p n

Y TP FP

N FN TN

technique for evaluating the effectiveness of our approach.
In ten-fold cross-validation, we split the training data into
ten folds. We perform ten evaluation round; in each round
nine folds are used for training and rest one fold is used
for testing. We sum up the ten round’s result to report the
overall performance. We conduct the whole experiment ten
times and report the average results. We use popular Python
(v-3.5) libraries, nltk9 for text mining, sklearn10 for machine
learning and imbalanced-learn11 for Random Under-sampling.
We use the default values of parameters of aforementioned
Python libraries. The parameters in feature selection approach,
l and α are set to {0.15, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0} and
{0.5} respectively, where values of l represent the percentage
of total features.

C. Evaluation Metrics

Popular metrics measure the performance of classifica-
tion models in terms of true positives, false positives, false
negatives and true negatives. Let in a binary classification
model, there are two kinds of samples namely positives, p and
negatives, n. The prediction of an instance has two values, Y
and N denoting positive and negative class. Then, TP, FP, FN
and TN denote true positives, false positives, false negatives
and true negatives respectively in Table III. Popular measures,
F-measure and Accuracy are not appropriate in evaluating
the performance in our experiment because class distribution
is not uniform. We use performance measurement approach
named Receiver operating characteristic (ROC). ROC graphs
are invariant with class and error cost distribution [11]. ROC
uses two metrics True Positive Rate, TPR and False Positive
Rate, FPR. TPR is defined by the true positives divided
by actual positive samples (6). TPR is known as hit rate,
equivalent to recall.

TPR =
TP

TP + FN
(6)

9https://www.nltk.org
10http://scikit-learn.org/
11http://contrib.scikit-learn.org/imbalanced-learn

FPR is defined by the false positive divided by actual negative
samples (7). FPR is known as false alarm rate.

FPR =
FP

FP + TN
(7)

ROC graphs are two-dimensional graphs in which TPR is
plotted on the Y axis and FPR is plotted on the X axis.
An ROC graph depicts relative trade-offs between benefits
(true positives) and costs (false positives). A scalar metric
named area under an ROC curve (AUC) is used to compare
the performance of different classifiers. AUC calculates the
area under the ROC curve constructed by plotting the score
of the classifier i.e. (FPR,TPR), in ROC graph. The AUC
value has a statistical property that the classifier will rank
a randomly chosen positive instance higher than a randomly
chosen negative instance [11]. The value of AUC ranges from
0.0 to 1.0. The AUC of random classification is 0.5. The
performance of a classifier is considered better if it scores
higher AUC value.

D. Experimental Results

We illustrate the experimental results of Sec-Model and
Perf-Model in this section. Table IIa and Table IIb show the
experiment results of Sec-Model and Perf-Model respectively
on different projects (i.e., datasets) in terms of AUC value.
We also calculate the average of AUC scores of four different
projects.

1) Answer to Research Question, RQ1: In Sec-Model,
from the Table IIa, we can see that our proposed approach,
Proposed-SFS of without-desc consistently outperforms RUS
and FS across four projects in terms of AUC value. The
average AUC values of Proposed-SFS, RUS and FS are 0.6688,
0.6283 and 0.6114 respectively. In with-desc, the proposed ap-
proach fails to outperform consistently. The proposed approach
scores 5% lower in Ambari and 3.5% in Wicket but 10% higher
in Derby than best of RUS and FS. In Perf-Model, from the
Table IIb, in without-desc, the proposed approach outperforms
RUS and FS across all projects but Ambari. In with-desc,
the proposed approach outperforms RUS and FS consistently
across all projects. The average AUC values of Proposed-SFS,
RUS and FS are 0.7083, 0.670 and 0.6625 respectively. So, our
proposed approach of combining feature selection and under-
sampling constructs a synergy.

2) Answer to Research Question, RQ2: In Sec-Model
(Table IIa), our proposed approach of without-desc performs
better than of with-desc in terms of average AUC, namely
0.6688 in without-desc and 0.6570 in with-desc. But this

320

improvement is not impressive. In Perf-Model (Table IIb), the
proposed approach of with-desc outperforms of without-desc
by 3.8%. In Sec-Model, the inclusion of description in feature
extraction does not increase the performance of the classifier
rather degrades the performance. But in Perf-Model, the overall
performance of the classifier increases with the inclusion of
description in feature extraction.

V. THREATS TO VALIDITY

Threats to construct validity concern the suitability of our
evaluation metrics. We have used area under of ROC curve
(AUC) metric in order to compare the performance of the
approaches. ROC graphs are popular in medical science, fraud
detection, etc., whose are akin to our case and ROC graphs
are invariant with respect to class and cost error distribution
[11]. So, there is no threat to construct validity. Threats to
internal validity concern human-error in experiments or bias
to randomization. We have used default values of parameters in
Python’s machine learning libraries in order to reduce internal
threat. We have also conducted each experiment ten times and
reported the average results. So, there is little threat to internal
validity. Threats to external validity concern the generalization
of our results. We have conducted our experimented on four
datasets of bug reports of four software projects created by
Ohira et al. [1]. The datasets contain bug reports of four
well-known software projects. So, usage of standard datasets
reduces the threats to external validity to some extent.

VII. CONCLUSION AND FUTURE WORK

Security and Performance bug reports are of great concern
of software providers and users. Security and Performance
bug reports classification is a class-imbalance problem. We
have proposed two separate models namely Sec-Model and
Perf-Model to identify security and performance bug reports
separately. The generalized approach (see Section III) of
combining feature selection and under-sampling outperforms
both individual under-sampling and feature selection . We have
also found that features extracted from both description and
summary help in identifying security and performance bug
reports more accurately than alone summary. In the future,
we will focus more on feature extraction sub-module. The
inclusion of structured information like author, component and
keywords, may lead to better performance of the learning based
approach in identifying security and performance bug reports.

V. ACKNOWLEDGMENTS

This research is supported by the fellowship from ICT
Division, Ministry of Posts, Telecommunications and Informa-
tion Technology, Bangladesh, No-56.00.0000.028.33.094.18-
168, dated 03 May, 2018.

REFERENCES

[1] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Lim-
settho, K. Fujino, H. Hata, A. Ihara, and K. Matsumoto, “A dataset of
high impact bugs: Manually-classified issue reports,” in 12th IEEE/ACM
Working Conference on Mining Software Repositories, MSR 2015,
Florence, Italy, May 16-17, 2015, 2015, pp. 518–521.

[2] Y. Kashiwa, H. Yoshiyuki, Y. Kukita, and M. Ohira, “A pilot study
of diversity in high impact bugs,” in 30th IEEE International Confer-
ence on Software Maintenance and Evolution, Victoria, BC, Canada,
September 29 - October 3, 2014, 2014, pp. 536–540.

[3] Z. Zheng, X. Wu, and R. K. Srihari, “Feature selection for text
categorization on imbalanced data,” SIGKDD Explorations, vol. 6, no. 1,
pp. 80–89, 2004.

[4] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in Proceedings of the 8th International
Working Conference on Mining Software Repositories, MSR 2011 (Co-
located with ICSE), Waikiki, Honolulu, HI, USA, May 21-28, 2011,
Proceedings, 2011, pp. 93–102.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
28th International Conference on Software Engineering (ICSE 2006),
Shanghai, China, May 20-28, 2006, 2006, pp. 361–370.

[6] B. Krawczyk, “Learning from imbalanced data: open challenges and
future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp.
221–232, 2016.

[7] Y. Yang and J. O. Pedersen, “A comparative study on feature selection
in text categorization,” in Icml, vol. 97, 1997, pp. 412–420.

[8] S. Sharmin, F. Aktar, A. A. Ali, M. A. H. Khan, and M. Shoyaib,
“Bfsp: A feature selection method for bug severity classification,” in
Humanitarian Technology Conference (R10-HTC), 2017 IEEE Region
10. IEEE, 2017, pp. 750–754.

[9] A. FernáNdez, V. LóPez, M. Galar, M. J. Del Jesus, and F. Herrera,
“Analysing the classification of imbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches,” Knowledge-
based systems, vol. 42, pp. 97–110, 2013.

[10] X. Yang, D. Lo, Q. Huang, X. Xia, and J. Sun, “Automated identification
of high impact bug reports leveraging imbalanced learning strategies,”
in 40th IEEE Annual Computer Software and Applications Conference,
COMPSAC 2016, Atlanta, GA, USA, June 10-14, 2016, 2016, pp. 227–
232.

[11] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[12] Y. Zhou and A. Sharma, “Automated identification of security issues
from commit messages and bug reports,” in Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017, 2017, pp. 914–919.

[13] Z.-H. Zhou, “Ensemble learning,” Encyclopedia of biometrics, pp. 411–
416, 2015.

[14] G. Forman, “An extensive empirical study of feature selection metrics
for text classification,” Journal of machine learning research, vol. 3,
no. Mar, pp. 1289–1305, 2003.

[15] M. Gegick, P. Rotella, and T. Xie, “Identifying security bug reports
via text mining: An industrial case study,” in Proceedings of the 7th
International Working Conference on Mining Software Repositories,
MSR 2010 (Co-located with ICSE), Cape Town, South Africa, May 2-3,
2010, Proceedings, 2010, pp. 11–20.

[16] S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance
bugs: a case study on firefox,” in Proceedings of the 8th working
conference on mining software repositories. ACM, 2011, pp. 93–102.

[17] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to
detecting duplicate bug reports using natural language and execution
information,” in 30th International Conference on Software Engineering
(ICSE 2008), Leipzig, Germany, May 10-18, 2008, 2008, pp. 461–470.

[18] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proceedings of the 2008 conference of the Centre
for Advanced Studies on Collaborative Research, October 27-30, 2008,
Richmond Hill, Ontario, Canada, 2008, p. 23.

[19] Y. Tian, D. Lo, and C. Sun, “DRONE: predicting priority of reported
bugs by multi-factor analysis,” in 2013 IEEE International Conference
on Software Maintenance, Eindhoven, The Netherlands, September 22-
28, 2013, 2013, pp. 200–209.

[20] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in 24th IEEE International Conference on Software
Maintenance (ICSM 2008), September 28 - October 4, 2008, Beijing,
China, 2008, pp. 346–355.

[21] G. Sharma, S. Sharma, and S. Gujral, “A novel way of assessing
software bug severity using dictionary of critical terms,” Procedia
Computer Science, vol. 70, pp. 632–639, 2015.

[22] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[23] N. Japkowicz and S. Stephen, “The class imbalance problem: A
systematic study,” Intelligent data analysis, vol. 6, no. 5, pp. 429–449,
2002.

321

